A dicembre 2021 il Governo italiano ha affidato all’Agenzia Spaziale Europea l’impegnativo incarico di sviluppare il sistema IRIDE. L’ESA ha raggiunto il primo degli obiettivi programmatici imposti dal PNRR, ovvero l’aggiudicazione di tutti i contratti entro il termine del 31 marzo 2023. Il programma è dotato di un budget complessivo di circa 1.1 miliardi di euro e sarà completato entro la metà del 2026.


IRIDE, uno tra i più importanti programmi spaziali satellitari europei di Osservazione della Terra – sarà realizzata in Italia sotto la gestione dell’ESA – European Space Agency e con il supporto dell’Agenzia Spaziale Italiana (ASI). La costellazione, insieme ad altri sistemi spaziali nazionali ed europei, è concepita per servire le Amministrazioni Pubbliche, quali la Protezione Civile e molte altre, per contrastare il dissesto idrogeologico e gli incendi, tutelare le coste, monitorare le infrastrutture critiche, la qualità dell’aria e le condizioni meteorologiche. Fornirà, infine, dati analitici per lo sviluppo di applicazioni commerciali da parte di startup, piccole e medie imprese e industrie di settore. In particolare IRIDE offrirà 8 macro servizi relativi al monitoraggio marino e costiero, alla qualità dell’aria, al monitoraggio dei movimenti del terreno, alla copertura del suolo, all’idro meteo clima, al monitoraggio delle risorse idriche, alla gestione delle emergenze e alla sicurezza.

 

Un team di astronomi guidato dal ricercatore Luca Di Mascolo dell’Università degli Studi di Trieste ha osservato per la prima volta le fasi iniziali di formazione di un ammasso di galassie.

Gli ammassi di galassie sono le strutture cosmiche gravitazionalmente legate più grandi dell’Universo e, come suggerisce il nome, contengono fino a diverse migliaia di galassie, oltre che materia oscura e un alone diffuso di gas caldo, il cosiddetto "Intracluster medium" (ICM). Si tratta di un gas che di fatto ha una massa che supera notevolmente quella delle galassie stesse e ne permea lo spazio tra l’una e l’altra.

 

“Tutto è pronto, mancano pochi secondi al Lancio. Inizia il conto alla rovescia: ‘Dieci… nove…motto…’ I motori del Lanciatore Spaziale si sono accesi e il satellite si aggrappa strettissimo al suo amico razzo. In un bagliore scintillante attraversa velocissimo il cielo, supera la stratosfera ed entra nello spazio!”
Scrivere un libro per bambini non è certo impresa facile. Deve essere semplice, ma non banale, divertente ed essere capace di accendere l’immaginazione del piccolo lettore. Le meraviglie del Lancio Spaziale scritto da Andrea Papa per Carmignani scienze contiene tutti questi elementi. Il libro approfondisce il tema dei satelliti iniziato su “Lo Zio Orso racconta i Satelliti” e ne descrive anche le fasi di integrazione, lancio e messa in orbita.

 

Lo studio pubblicato su «PNAS» dal team di ricerca guidato dall’Università di Padova mostra, per la prima volta, come gli atomi di alcuni vetri, esposti a raggi X, si spostano in risposta a tante piccole “molle cariche” che si accendono in maniera casuale nel materiale. L’effetto medio è che gli atomi si muovono con una serie di accelerazioni improvvise, un po’ come biglie in un flipper.
La ricerca mostra una possibile nuova strategia per modificare, e dunque alla fine controllare, le proprietà fisiche dei vetri. Un vetro può essere realizzato raffreddando rapidamente un liquido - si pensi ad un comune oggetto di vetro ottenuto per raffreddamento del fuso. In conseguenza di questa procedura, nello stato vetroso gli atomi si trovano in una forma disordinata, come in un liquido. A differenza di quest’ultimo, però, la loro configurazione resta pressoché fissa, vale a dire che gli atomi sono vincolati alla loro posizione di equilibrio e possono spostarsi all’interno del materiale solo in tempi estremamente lunghi (comunque troppo estesi anche per un osservatore molto paziente).
Recentemente si è rilevato che, esponendo i vetri a un fascio di raggi X di intensità sufficiente, è possibile indurre spostamenti degli atomi all’interno dei vetri: sottoposti ai raggi X i vetri fluiscono, come i liquidi.



Il 21 maggio 2019 i due interferometri LIGO, negli USA, e Virgo, in Italia, hanno rivelato un segnale gravitazionale straordinariamente intenso, ma estremamente breve. Una sorta di potentissimo gong cosmico, chiamato GW190521, dalla data della sua rivelazione. L’onda gravitazionale era stata generata dalla fusione di due buchi neri a miliardi di anni luce di distanza dalla Terra e, in seguito a quel fragoroso scontro, è stato prodotto un buco nero di oltre 150 masse solari, il buco nero più massiccio osservato fino ad oggi da LIGO e Virgo.

 GW190521 è stata un’osservazione eccezionale e per molti versi enigmatica, che ha stimolato gli astrofisici a immaginare possibili scenari cosmici che spieghino il meccanismo di formazione della coppia binaria e le caratteristiche della sua violenta fusione. Giovedì 17 novembre, un gruppo di ricerca composto da scienziati della sezione di Torino dell’Istituto Nazionale di Fisica Nucleare, insieme ai colleghi dell’Università di Torino e dell’Università Friedrich Schiller di Jena (Germania), ha pubblicato un importante studio su Nature Astronomy, intitolato 'GW190521 as a dynamical capture of two nonspinning black holes', in cui prova a interpretare la natura enigmatica di questo segnale gravitazionale anomalo.

 

L’esperimento è stato lanciato tramite razzo vettore sulla International Space Station per osservare gli effetti della microgravità sulle funzioni endocrine di cellule ovariche bovine. I risultati serviranno a comprendere alcuni aspetti della riproduzione sulla Terra, ma anche in vista di missioni spaziali di lunga durata ed eventuali insediamenti umani in altri pianeti
Il 7 novembre alle ore 5.35 del mattino sulla costa est degli USA, è stato lanciato con successo il razzo NG-18/Antares dalla base NASA Wallops Flight Facility (Virginia).

Il razzo vettore ha lanciato la navicella Cygnus che ha portato sulla International Space Station rifornimenti e alcuni esperimenti scientifici. Fra questi, l’esperimento del progetto OVOSPACE, finanziato e coordinato dall’Agenzia Spaziale Italiana (ASI) e ideato da un gruppo di ricercatori del Dipartimento di Medicina sperimentale della Sapienza guidati dal Mariano Bizzarri.

Molecole di ammoniaca nella fase liquida (sinistra) che vengono ordinate in una nuova fase solida cristallina dall'applicazione di campi elettrici intensi (destra) in istantanee raccolte da simulazioni di dinamica molecolare ab initio.

 

Un gruppo di ricerca dell’Istituto per i processi chimico-fisici del Consiglio nazionale delle ricerche (Cnr-Ipcf), usando metodi avanzati di simulazione al supercalcolatore, ha dimostrato per la prima volta che si possono ottenere fasi solide di ammoniaca tramite l’applicazione di campi elettrici intensi, con implicazioni che spaziano dalle scienze planetarie alla produzione dell’idrogeno. Lo studio è pubblicato su The Journal of Physical Chemistry Letters.

L’ammoniaca è una delle sostanze più abbondanti del nostro sistema solare. In molti laboratori all’avanguardia è possibile produrre campi elettrici molto intensi che consentono di indagare diversi fenomeni tramite varie tecniche chimico-fisiche. Tuttavia, finora non erano mai stati studiati gli effetti prodotti dai campi elettrici sull’ammoniaca liquida. In uno studio pubblicato su The Journal of Physical Chemistry Letters, rivista della American Chemical SocietyACS, un gruppo di ricerca dell’Istituto per i processi chimico-fisici del Consiglio nazionale delle ricerche (Cnr-Ipcf) di Messina, in collaborazione con l’Accademia delle scienze della Repubblica Ceca di Brno, usando metodi avanzati di simulazione al supercalcolatore, ha dimostrato per la prima volta che campi elettrici intensi sono capaci di indurre una transizione strutturale dal liquido verso una nuova fase solida dell’ammoniaca.

I primi studi della presenza di acqua liquida salata sotto la calotta polare sud di Marte risalgono a ricerche pubblicate nel 2018 e nel 2021. Il 28 settembre, il terzo studio è stato pubblicato su Nature Communications da un team italo-statunitense.
Guidato da Roberto Orosei (INAF-IRA) ed Elena Pettinelli (Università degli studi RomaTre) con il coordinamento di ASI, il team italiano dello strumento MARSIS, il radar italiano a bordo della missione Mars Express dell’ESA, ha ottenuto importanti conferme.
Grazie a una nuova collaborazione tra il team italiano, che ha guidato la scoperta iniziale, e colleghi statunitensi, è stato possibile condurre nuovi esperimenti di laboratorio e simulazioni che hanno dimostrato in modo conclusivo l’incompatibilità fra le temperature marziane alle frequenze alle quali opera MARSIS e la presenza alla base del ghiaccio di materiali diversi dall’acqua salata.


Grazie alle osservazioni del radiotelescopio LOFAR, un gruppo internazionale di astronomi ha individuato per la prima volta enormi aloni radio che avvolgono interi ammassi di galassie e sono alimentati
dall’energia gravitazionale che modella la struttura dell’universo.

Un gruppo internazionale di astronomi ha individuato quattro casi di ammassi di galassie interamente avvolti da una debole emissione radio che si estende fino alle loro estreme periferie. Queste sorgenti radio – che gli studiosi hanno chiamato “Megahalos” – si estendono per 10 milioni di anni luce e coprono un volume 30 volte più grande rispetto alle sorgenti radio finora note
rilevate in ambienti simili. La ricerca – pubblicata su Nature – è stata realizzata utilizzando dati raccolti
dal radiotelescopio LOFAR (Low Frequency Array): i risultati ottenuti suggeriscono che questi “Megahalos”, alimentati dall’energia gravitazionale che modella la struttura dell’universo, potrebbero essere un fenomeno comune in molte parti dell’universo. “Abbiamo scoperto un acceleratore di particelle di proporzioni cosmologiche e questo studio suggerisce che molti altri ammassi di galassie potrebbero mostrare emissioni su scale così grandi”, commenta Virginia Cuciti, ricercatrice all’Università di Amburgo, alumna dell’Università di Bologna e prima autrice dello studio.


Le misure di gravità effettuate dalla sonda Juno della Nasa hanno rivelato che le masse gassose di Giove si muovono, provocando sulla superficie del pianeta oscillazioni simili a onde marine con ampiezze tra i 15 e gli 80 metri. I risultati dello studio, coordinato dal Dipartimento di Ingegneria meccanica e aerospaziale della Sapienza, sono stati pubblicati sulla rivista Nature Communications
Giove è un pianeta gassoso e le sue masse interne possono muoversi, generando oscillazioni simili per certi versi alle onde marine e ai terremoti terrestri. Questi spostamenti di masse provocano piccole variazioni della gravità del pianeta.

 

Scienzaonline con sottotitolo Sciencenew  - Periodico
Autorizzazioni del Tribunale di Roma – diffusioni:
telematica quotidiana 229/2006 del 08/06/2006
mensile per mezzo stampa 293/2003 del 07/07/2003
Scienceonline, Autorizzazione del Tribunale di Roma 228/2006 del 29/05/06
Pubblicato a Roma – Via A. De Viti de Marco, 50 – Direttore Responsabile Guido Donati

Photo Gallery