Con questo studio si è dimostrato come sia possibile ottenere una materia solida ma con alcune proprietà affini ai fluidi, attraverso l’integrazione di ‘motori e rotori molecolari’ in matrici solide.
Nei motori che utilizziamo nella vita di tutti i giorni, come quelli delle autovetture, le componenti rotanti rivestono un ruolo di fondamentale importanza; allo stesso modo, la realizzazione di motori molecolari richiede che siano disponibili unità molecolari rotanti in modo continuo e ‘fluido’.
Per questo, l’attività di ricerca è stata dedicata alla sintesi di strutture cristalline porose dette MOFs, acronimo per Metal-Organic Frameworks. Questa è stata la base per realizzare i rotori veloci allo stato solido, dove i gruppi molecolari rotanti vengono sostenuti da un’impalcatura cristallina fissa che agisce da statore. L’elevata porosità dei MOFs è tale che ogni gruppo molecolare rotante abbia molto spazio vuoto attorno a sé e, quindi, possa ridurre la sua interazione quasi a zero con la struttura cristallina, mantenendo un regime rotatorio ultraveloce anche a freddo e realizzando qualcosa che è in contrasto con il concetto stesso di struttura ordinata e cristallina.
«I sistemi progettati per produrre moti molecolari coerenti – dichiara il professor Piero Sozzani - permettono di commutare le forme di energia, (luminosa, magnetica ed elettrica) in lavoro meccanico coerente, utile nella vita di ogni giorno: proprio come un motore trasforma energia chimica oppure elettrica nel movimento desiderato.»
«Questo obiettivo – aggiunge Sozzani - è contrastato dall’agitazione termica che scuote perennemente le molecole come un violento terremoto: quindi, è opportuno ridurre la temperatura ai limiti estremi, ma così facendo il congelamento di ogni forma di moto è la conseguenza ovvia nei materiali esistenti fino ad ora. In questi nuovi materiali dinamici il congelamento globale non avviene anche a 2 gradi Kelvin, ma il moto persistente e unidirezionale può essere sostenuto per molti giri del rotore.»