Chimica

Chimica (25)



Un gruppo di ricerca internazionale coordinato dal Consiglio nazionale delle ricerche è riuscito a sintetizzare per la prima volta il nitruro cristallino di antimonio, un composto la cui esistenza è stata a lungo ipotizzata, ma mai sperimentalmente osservata. Oltre ad avere rilevanza da un punto di vista chimico fondamentale, la scoperta apre nuove prospettive per la sintesi ad alta pressione di un’intera classe di materiali innovativi di interesse energetico e tecnologico
Un gruppo di ricerca internazionale coordinato dall’Istituto di chimica dei composti organo-metallici del Consiglio nazionale delle ricerche (Cnr-Iccom) di Sesto Fiorentino (Firenze) e dal Laboratorio Europeo di Spettroscopie Non-Lineari (LENS), è riuscito a sintetizzare per la prima volta un composto la cui esistenza è stata a lungo ipotizzata, ma mai sperimentalmente osservata: il nitruro cristallino di antimonio con formula chimica Sb3N5. Il nuovo composto è stato scoperto attivando una reazione chimica diretta tra antimonio e azoto in condizioni di alta pressione e alta temperatura.

Rappresentazione dell’assorbimento di raggi X in un vetro

 


Osservato per la prima volta il comportamento di questo materiale quando raggiunge il punto di cedimento tramite irraggiamento con raggi X. Non si comporta più come un solido, ma come un liquido.
Un vetro è, essenzialmente, un liquido che può fluire e scorrere, ma con tempi estremamente lunghi. Quando la sua temperatura è sufficientemente bassa rispetto alla quella di fusione (nota come temperatura di transizione vetrosa), il tempo necessario perché il vetro fluisca è praticamente infinito e siamo di fronte a un solido propriamente detto. Un vetro a temperatura sufficientemente bassa è dunque un solido che, a livello microscopico, conserva la struttura disordinata tipica di un liquido o – come a volte si dice – è un “liquido congelato’”.


Tre prospettive della superficie sulla quale gli elettroni si muovono, la superficie di Fermi

 


Compresa una importante proprietà dei materiali allo stato quantistico: la “curvatura” dello spazio in cui si muovono gli elettroni. La ricerca, pubblicata su Nature Physics, è stata condotta presso il Sincrotrone Elettra di Trieste: è frutto di un team internazionale che ha coinvolto, per l’Italia, il Cnr-Iom, l’Università di Bologna e le Università Ca‘ Foscari di Venezia e Statale di Milano

 Una ricerca pubblicata sulla rivista Nature Physics rivela un nuovo metodo per raggiungere una più profonda conoscenza dei materiali quantistici.

Grazie a una tecnica sperimentale che sfrutta la luce di sincrotrone, infatti, un team internazionale di ricercatrici e ricercatori -di cui fanno parte per l’Italia, l’Istituto officina dei materiali del Consiglio nazionale delle ricerche di Trieste (Cnr-Iom), l’Università di Bologna, le Ca‘ Foscari di Venezia, Statale di Milano e l’Università di Bologna- hanno potuto misurare “l’avvolgimento” degli elettroni, proprietà che determina alcune particolari caratteristiche dei materiali, dalla cui comprensione dipeenderà la possibilità di impiegarli in applicazioni avanzate future.

 

Un gruppo di ricerca internazionale, coordinato dall’Istituto di chimica dei composti organometallici del Cnr di Sesto Fiorentino ha sintetizzato, per la prima volta, un nitruro di arsenico cristallino dalla reazione di arsenico e azoto ad alta pressione e alta temperatura. I risultati dello studio sono pubblicati sulla rivista Angewandte Chemie International Edition

Arsenico (As) e azoto molecolare (N2) non reagiscono spontaneamente a condizioni ambiente.
Generando condizioni di altissima pressione e temperatura (300000 volte la pressione atmosferica e circa 1200 °C), ottenute mediante strumenti chiamati celle ad incudine di diamante in combinazione con tecniche di riscaldamento laser, ricercatori dell’Istituto di chimica dei composti organometallici del Consiglio nazionale delle ricerche (Cnr-Iccom), dell’European laboratory for non-liner spectroscopy (Lens) di Sesto Fiorentino, dell’European synchrotron radiation facility (Esrf) di Grenoble e dei Dipartimenti di chimica dell’Università di Firenze e Pavia, sono riusciti ad indurre una reazione chimica tra arsenico e azoto molecolare in assenza di solventi o catalizzatori e a sintetizzare per la prima volta un nitruro di arsenico cristallino di formula chimica AsN.



Gli enzimi polifenol-ossidasi (PPO), presenti in quasi tutte le specie vegetali, sono responsabili dell’imbrunimento enzimatico di molti prodotti alimentari. Per il frumento, l’imbrunimento delle farine è giudicato negativamente dai consumatori. Attualmente, infatti, sebbene la colorazione scura delle paste, dei pani e dei prodotti da forno sia accettata dai consumatori in quando derivati dall’utilizzo di sfarinati integrali e ricchi di fibre, per i prodotti raffinati, la colorazione scura è indicativa di un prodotto di scarsa qualità.

Utilizzando oltre 200 frumenti rappresentativi di specie selvatiche, di specie addomesticate (come il farro, il frumento turanico, polonico, turgido ed il frumento cartlico, detto anche persiano), di ecotipi locali e di varietà di frumento duro coltivate in Italia nell’ultimo secolo, i ricercatori dell'Istituto di bioscienze e biorisorse (Ibbr) del Consiglio Nazionale delle Ricerche, e del CREA, Centro di ricerca Cerealicoltura e Colture Industriali, hanno compreso che le PPO hanno avuto un ruolo nel processo evolutivo del frumento.

Immagine: Esempi di emulsioni multiple contenti tre (sinistra) e quattro (destra) gocce il cui moto è guidato da vortici di fluido prodotti all’interno della goccia più grande.

 


Osservato un nuovo esempio di materia soffice composto da gocce di fluido in miniatura incapsulate in una goccia più grande. Simulazioni al computer hanno mostrato le gocce muoversi come in una sorta di balletto. Lo studio, coordinato dall'Istituto italiano di tecnologia, svolto in collaborazione con l’Istituto per le applicazioni del calcolo del Consiglio nazionale delle ricerche e l'Università di Harvard, promette diverse ricadute, dalla scienza dei materiali alla medicina e farmaceutica. I risultati sono pubblicati su Nature Communications “Comprendere il comportamento della materia soffice rappresenta una delle sfide più importanti ed interdisciplinari della scienza moderna che porterà applicazioni tecnologiche innovative in diversi campi”.

A parlare è Adriano Tiribocchi, ricercatore dell’Istituto italiano di tecnologia (Iit) che sul tema, insieme ai colleghi dell’Istituto di applicazione del calcolo 'Mauro Picone' del Consiglio nazionale delle ricerche (Cnr-Iac), di cui è associato, e dell’Università di Harvard, ha firmato un lavoro pubblicato rivista Nature Communications. Il lavoro è stato supportato dall’European Research Council attraverso l’Advanced Grant Copmat, di cui è titolare Sauro Succi, responsabile del Mesoscale Simulations Lab dell’Iit, dove lavora anche Tiribocchi.

 


Uno studio, pubblicato su Nature Communications, descrive una nuova sintesi della fosfina (PH3) a partire dagli elementi in condizioni di alta pressione e alta temperatura in assenza di catalizzatori.
Lo studio dimostra inoltre che, a pressione ancora più alta e a temperatura ambiente, PH3 e idrogeno molecolare (H2) formano un composto cristallino di formula (PH3)2H2, che non era mai stato osservato fino ad ora per nessuno degli elementi del gruppo 15 della tavola periodica La tavola periodica degli elementi di Mendeleev ha ancora qualcosa da svelare quando il comportamento della materia viene studiato in condizioni estreme di pressione e temperatura.

Ad esempio, mentre a pressione ambiente il comportamento di carbonio, azoto e ossigeno (C, N e O, primi elementi dei gruppi 14, 15 e 16) differisce molto da quello di silicio, fosforo e zolfo (Si, P e S, elementi corrispondenti al periodo successivo dello stesso gruppo), sia per gli stati fondamentali che per la loro reattività, ad alta pressione queste differenze tendono ad assottigliarsi, mettendo in evidenza comportamenti simili all’interno del gruppo. Ad esempio, la sintesi catalitica dell’ammoniaca (NH3) a partire da azoto (N2) e idrogeno (H2), alla base del processo di Haber-Bosch, è una delle reazioni più importanti per l’umanità, avendo permesso la produzione dei fertilizzanti a partire dall’azoto atmosferico. Tuttavia, nonostante fosse stata ricercata a lungo, finora non era mai stata osservata una reazione analoga del fosforo (l’elemento successivo all’azoto all’interno del gruppo 15) con l’idrogeno (H2), che portasse alla formazione di fosfina (PH3).



Il passaggio a un’economia basata su fonti di energia rinnovabile richiede l’utilizzo di metodi elettrochimici per convertire l’energia elettrica in energia chimica e in materie prime. Un gruppo di ricercatori del Politecnico di Berlino, del Politecnico di Zurigo, dell’Istituto officina dei materiali del Consiglio nazionale delle ricerche di Trieste e guidato dall’Istituto Fritz Haber di Berlino ha scoperto il meccanismo di reazione di uno dei colli di bottiglia di questi processi, la reazione di evoluzione di ossigeno. Lo studio è pubblicato su Nature. 

Uno dei tasselli fondamentali nella transizione a un’economia basata su fonti energetiche rinnovabili è lo sviluppo di nuovi materiali per l’evoluzione elettrocatalitica dell’ossigeno, momento cruciale nell’elettrolisi dell’acqua. L’elettrolisi è un processo che utilizza energia elettrica per scindere l’acqua nei sui elementi costitutivi, ossigeno e idrogeno, tramite reazioni chimiche. Queste reazioni avvengono sulla superficie dei catalizzatori, elementi che si usano per accelerare o favorire una reazione chimica. In uno studio pubblicato su Nature, il gruppo composto da ricercatori dell’Istituto officina dei materiali del Consiglio nazionale delle ricerche (Cnr-Iom), con sede in Area Science Park, Politecnico di Berlino, Politecnico di Zurigo e Istituto Fritz Haber di Berlino, spiega il funzionamento di una delle migliori classi di catalizzatori per la reazione di evoluzione dell’ossigeno: gli ossidi di iridio.



Meccanismo di formazione della molecola perfluorurata modello, fotocatalizzata dal materiale am-CN

 

Uno studio guidato dall’Università di Trieste e pubblicato su Science Advances ha messo a punto un materiale che, sfruttando la luce solare, è in grado di sintetizzare molecole ad alto valore industriale. Lo studio propone una tecnica che evita l’utilizzo di metalli costosi, tossici e non riciclabili, aprendo la strada ad una industria chimica sostenibile e dai costi moderati.

Una ricerca guidata dall’Università di Trieste e pubblicata oggi sulla rivista scientifica Science Advances, ha messo a punto un materiale a base di nitruro di carbonio che ha caratteristiche adatte ad un utilizzo per tecniche di fotocatalisi: sfruttando l’energia proveniente da una radiazione luminosa, il materiale attiva reazioni chimiche che portano alla formazione di molecole ad alto valore industriale senza l’utilizzo di metalli tossici e costosi. Si tratta di molecole di grande importanza, perché potenzialmente utili a migliorare le prestazioni dei dispositivi a cristalli liquidi, come gli schermi di PC, TV o smartphone.


Un nuovo studio numerico, risultato di una collaborazione tra la Sapienza Università di Roma e la Princeton University, ha dimostrato per la prima volta l’esistenza di due diverse forme di acqua, ovvero di due distinte fasi liquide che a bassissime temperature si separano, galleggiando l’una sull’altra. Il lavoro, pubblicato sulla rivista Science, apre nuove strade alla comprensione dei misteri legati al liquido della vita
Ogni liquido assume la forma del contenitore che lo accoglie. Sappiamo che è così perché riusciamo a osservarlo direttamente con i nostri occhi. Eppure questa affermazione vale solo a livello macroscopico. A livello molecolare infatti ogni liquido ha una forma propria determinata dalla posizione spaziale in cui si dispongono le molecole che lo compongono.

L'acqua, il liquido della vita, potrebbe invece essere differente e avere, non una, ma bensì due forme molecolari diverse: una forma in cui localmente ogni molecola è circondata da quattro altre molecole disposte con una geometria tetraedrica (ordinata) e con le quali forma dei legami particolarmente intensi (i legami idrogeno), e una in cui la struttura tetraedrica invece è significativamente distorta, ovvero una configurazione più disordinata, in cui alcune molecole formano solo tre o cinque legami idrogeno.

 

Scienzaonline con sottotitolo Sciencenew  - Periodico
Autorizzazioni del Tribunale di Roma – diffusioni:
telematica quotidiana 229/2006 del 08/06/2006
mensile per mezzo stampa 293/2003 del 07/07/2003
Scienceonline, Autorizzazione del Tribunale di Roma 228/2006 del 29/05/06
Pubblicato a Roma – Via A. De Viti de Marco, 50 – Direttore Responsabile Guido Donati

Photo Gallery