After Stanford's initial find, Stephen J. Godfrey, curator of paleontology at the Calvert Marine Museum, coordinated the excavation of the slab and produced the mold and cast that formed the basis of the scientific work. The first track Stanford found was of a nodosaur — "think of them as a four-footed tank," Stanford said. Subsequent examination revealed a baby nodosaur print beside and within the adult print, likely indicating that they were traveling together. The other dinosaur tracks include: a sauropod, or long-necked plant-eater; small theropods, crow-sized carnivorous dinosaurs closely related to the Velociraptor and Tyrannosaurus rex; and pterosaurs, a group of flying reptiles that included pterodactyls. “It’s a time machine,” Stanford said. “We can look across a few days of activity of these animals and we can picture it. We see the interaction of how they pass in relation to each other. This enables us to look deeply into ancient times on Earth. It’s just tremendously exciting.” The dinosaur tracks are impressive, but it is the collection of mammal tracks that make the slab significant. At least 26 mammal tracks have been identified on the slab since the 2012 discovery — making it one of two known sites in the world with such a concentration of prints. Furthermore, the slab also contains the largest mammal track ever discovered from the Cretaceous. It is about four inches square, or the size of a raccoon's prints. Lockley and Stanford said most of these ancient footprints belong to what we would consider small mammals — animals the size of squirrels or prairie dogs. Most Cretaceous mammals discovered to date have been the size of rodents, their size usually determined only from their teeth. “When you have only teeth, you have no idea what the animals looked like or how they behaved,” Lockley said.
Lockley and Stanford believe the wide diversity and number of tracks show many of the animals were in the area actively feeding at the same time. Perhaps the mammals were feeding on worms and grubs, the small carnivorous dinosaurs were after the mammals, and the pterosaurs could have been hunting both the mammals and the small dinosaurs. The parallel trackway patterns made by four crow-sized carnivorous dinosaurs suggests they were hunting or foraging as a group. “It looks as if they were making a sweep across the area," Lockley said. Several of the mammal tracks occur in pairs, representing hind feet. “It looks as if these squirrel-sized animals paused to sit on their haunches," Lockley said. The team gave the new formal scientific name of Sederipes goddardensis, meaning sitting traces from Goddard Space Flight Center, to this unusual configuration of tracks.
“We do not see overlapping tracks — overlapping tracks would occur if multiple tracks were made over a longer period while the sand was wet,” said Compton Tucker, a Goddard Earth scientist who helped with the excavation, coordinated bringing in multiple scientists to study the tracks, and has worked to create a display of the cast in Goddard's Earth science building. "People ask me, 'Why were all these tracks in Maryland?' I reply that Maryland has always been a desirable place to live.” What is now Maryland would have been a much hotter, swampier place in the Cretaceous, when sea levels would have been hundreds of feet higher than today. As scientists continue to study the slab and compare the tracks to others found in the area and around the world, they will continue to discover more about prehistoric life that existed here.
“This could be the key to understanding some of the smaller finds from the area, so it brings everything together,” Lockley said. "This is the Cretaceous equivalent of the Rosetta stone."
In addition to Stanford and Lockley, Tucker, Stephen Godfrey and Sheila Stanford were also co-authors on the Scientific Reports paper.
For more information about the discovery and excavation of the tracks, see these previous stories:
http://www.nasa.gov/centers/goddard/news/features/2012/nodosaur.html
http://www.nasa.gov/centers/goddard/news/features/2013/nodosaur.html
By Ashley Hume and Patrick Lynch
NASA's Goddard Space Flight Center, Greenbelt, Md.