Aggiornare un sistema di AI, d’altronde, può arrivare a costare fino a diversi milioni euro. Mentre per avere un’idea dell’impronta ambientale dell’AI basti pensare che, secondo un recente studio dell’Università del Massachusetts, l’addestramento di diversi modelli di intelligenza artificiale di grandi dimensioni può emettere una quantità di anidride carbonica equivalente a cinque volte quella emessa da un’auto americana media durante il suo ciclo di vita, compreso il processo di produzione.
Una soluzione a tutto ciò, secondo Lomonaco e gli altri ricercatori del Neuromorphic AI Lab - coordinato dalla professoressa Dhireesha Kudithipudi -, è rappresentata dall’Apprendimento Automatico Continuo (noto anche come Continual Learning o Lifelong Learning), che permetterebbe all’AI di assimilare un gran numero di conoscenze in sequenza, senza dimenticare quelle acquisite in precedenza.
“Per realizzare un sistema di apprendimento di questo genere è necessario modificare gli attuali paradigmi computazionali ed eliminare i vincoli infrastrutturali esistenti – prosegue Lomonaco – Per questo, con i colleghi del NUAI Lab di San Antonio, abbiamo gettato le basi di un nuovo sistema di apprendimento incrementale, basato sul co-design hardware-software. Ossia sulla progettazione simultanea di componenti hardware e software, così da dar vita ad un sistema di lifelong learning per l’AI che sia robusto e autonomo. Il tutto basato su algoritmi di nuova generazione che, lavorando in modo più simile all’intelligenza umana, permettono all’Intelligenza Artificiale di accrescere le proprie conoscenze in modo progressivo, più rapido ed efficiente, con consumi che si avvicinano a quelli di una lampadina”.