UNA NUOVA DEFINIZIONE DI "NANA BIANCA"
“Con le nostre osservazioni abbiamo scoperto che non tutte le Nane Bianche invecchiano allo stesso modo, e questa è davvero una scoperta sorprendente, che va contro quello che si era pensato fino a questo momento”, dice Jianxing Chen, studente di dottorato dell’Università di Bologna e associato INAF, primo autore dello studio. “La nostra scoperta cambia la definizione stessa di Nana Bianca così come siamo abituati ad insegnarla agli studenti nei corsi di astrofisica, e apre una nuova prospettiva sui processi che regolano l’invecchiamento delle strutture stellari”, aggiunge Francesco Ferraro, professore al Dipartimento di Fisica e Astronomia “Augusto Righi” dell'Università di Bologna e associato INAF, che ha coordinato lo studio.
Non solo: questi risultati hanno anche dirette conseguenze sul modo con cui gli astrofisici misurano l’età delle stelle nella nostra galassia. Infatti, nell’ottica adottata finora, la relazione tra l’età e la luminosità o temperatura delle Nane Bianche era così stringente che il tasso di invecchiamento di queste stelle è stato utilizzato come una sorta di orologio naturale. “I dati che abbiamo ottenuto mostrano che questo orologio va usato con cautela”, spiega Emanuele Dalessandro, ricercatore INAF, coautore dello studio. “Sappiamo ora che alcune Nane Bianche possono essere ad invecchiamento lento, per questo l’errore nella determinazione dell’età può essere rilevante: fino ad un miliardo di anni”.
AMMASSI STELLARI A CONFRONTO
A rendere possibile la scoperta sono state osservazioni profondissime ottenute con il telescopio spaziale Hubble. In particolare, gli studiosi hanno utilizzato immagini di due ammassi stellari (ammassi globulari) noti con i nomi di Messier 3 e Messier 13 (M3 e M13): due sistemi molto simili tra loro in termini di età e di contenuto di metalli, che per questo formano una coppia ideale per lo studio comparato delle popolazioni stellari. E il confronto è stato una vera sorpresa. La popolazione di Nane Bianche in M13 è risultata decisamente più numerosa di quella di M3 nello stesso intervallo di luminosità (oltre 460 Nane Bianche sono state contate in M13, contro le 326 di M3). Una differenza particolarmente sorprendente anche tenendo conto che, globalmente, M13 contiene meno stelle di M3. La spiegazione – suggeriscono gli studiosi – è da cercare nelle proprietà stesse delle Nane Bianche di M13, e in particolare in un loro più lento processo di invecchiamento: affievolendosi più
lentamente, il numero di stelle ancora osservabili in un dato intervallo di luminosità è maggiore in M13 che in M3.
UN SOTTILE STRATO DI IDROGENO
Ma perché queste Nane Bianche "più longeve" sono presenti in M13 e non in M3? La chiave del mistero è scritta nel loro passato. Quando le stelle si avvicinano alla fase finale della loro vita avviene infatti un processo di rimescolamento che trasporta l'idrogeno presente nel loro strato esterno fin dentro le regioni più interne, dove viene bruciato. Queste stelle arrivano così allo stato di Nana Bianca senza idrogeno residuo.
In alcune stelle con una massa minore, però, questo processo non riesce ad attivarsi: è quanto avviene nella gran parte delle stelle di M13, mentre quelle di M3, essendo (seppur di poco) più massicce, vengono “rimescolate” e affrontano la fase finale della loro esistenza senza poter più produrre energia, invecchiando quindi più rapidamente. “La nostra scoperta dimostra che alcune Nane Bianche sono in grado di trattenere un sottilissimo strato di idrogeno, dell’ordine di un decimillesimo della massa del Sole, che è però sufficiente a permettere una minima attività termonucleare”, conferma Francesco Ferraro. “Riuscendo a produrre ancora un po’ di energia, queste stelle rallentano così il processo di spegnimento e di raffreddamento, e di conseguenza frenano il loro invecchiamento”.
I PROTAGONISTI DELLO STUDIO
Lo studio è stato pubblicato su Nature Astronomy con il titolo “Slowly cooling white dwarfs in M13 from stable hydrogen burning”. Hanno partecipato gli studiosi dell'Università di Bologna (Dipartimento di Fisica e Astronomia "Augusto Righi") e associati INAF Jianxing Chen, Francesco R. Ferraro, Barbara Lanzoni e Cristina Pallanca, insieme Mario Cadelano ed Emanuele Dalessandro dell’INAF. Hanno partecipato inoltre Maurizio Salaris (Liverpool John Moores University, Regno Unito) e Leandro Althaus (Universidad Nacional de La Plata, Argentina).
Maggiori informazioni e approfondimenti su: http://www.cosmiclab.eu/Cosmic-Lab/slow_WD_it.html.